ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Zbigniew Weiss, Sten-Örjan Lindahl
Nuclear Science and Engineering | Volume 58 | Number 2 | October 1975 | Pages 166-181
Technical Paper | doi.org/10.13182/NSE75-1
Articles are hosted by Taylor and Francis Online.
Response matrix equations in two-dimensional geometry have been derived in the form of a set of coupled integral equations of the Fredholm type that have been solved by the moments method. The set of Legendre polynomials defined at the material interfaces has been chosen as the base for representing the partial interface currents and the response matrices. The method has been applied to the solution of the one-group diffusion equation and its convergence has been investigated in a series of numerical experiments, involving expansions of up to order 14. It turned out that the P1 approximation should be adequate for the majority of the two-dimensional problems occurring in power reactor design. Furthermore, the response method has a substantially higher computer efficiency than the finite difference method, both in processor time and in storage locations. As a by-product, the nature of the singularities around edges and corners of material interfaces has been analyzed by numerical experimentation.