ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
A. M. Melandri, F. Premuda, G. P. Prelati
Nuclear Science and Engineering | Volume 55 | Number 2 | October 1974 | Pages 225-233
Technical Note | doi.org/10.13182/NSE74-A28209
Articles are hosted by Taylor and Francis Online.
Calculations of neutron escape probability from a homogeneous isotropically scattering slab of finite optical thickness are reported as obtained by solving exactly the stationary linear integral transport equation for the total flux of monoenergetic neutrons. This is done for both critical and subcritical configurations of the slab under examination, with both constant and variable sources being referred to in the latter configuration. Due to the transport approach here used, the numerical results for the escape probability cover the full range of variation of the mean number of scattered neutrons per collision, cs, i.e., 0 ≤ cs ≤ 1, whereas the half-thickness of the slab considered ranges from 5 or 10 mean-free-paths down to values as small as 10-4 mean-free-paths.