ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
C. David Livengood, C. Keith Paulson, H. E. Hungerford
Nuclear Science and Engineering | Volume 52 | Number 2 | October 1973 | Pages 254-266
Technical Paper | doi.org/10.13182/NSE73-A28194
Articles are hosted by Taylor and Francis Online.
Experimental techniques previously used for measuring neutron spectra in fast critical assemblies have been applied to reactor shielding problems. Fast-neutron spectra in the energy range from 25 keV to 1 MeV have been measured in the water shield surrounding a small thermal research reactor. Three different water thicknesses were investigated, as well as a combination of water with a 2-in.-thick slab of iron. The spectrometer system developed for these measurements employs small proton-recoil proportional counters, together with electronic pulse-shape discrimination for the rejection of gamma-ray signals. Since this discrimination is extremely important for shielding measurements, the detectors and electronic system are described in some detail. The basic theory underlying proton-recoil measurements of neutron spectra is reviewed, as well as the techniques used to correct for errors arising due to finite detector size and irregularities in the electric field within the counters. Results of the water measurements indicate that the spectrometer is capable of measuring the absolute neutron flux as well as relative variations within the spectrum at a given point. In addition, predictions of spectral hardening with increasing water thickness are verified. The water-iron measurements indicate that the system is capable of measuring spectral features caused by resonances in the cross section of the shield material.