ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. E. Maerker, F. J. Muckenthaler
Nuclear Science and Engineering | Volume 52 | Number 2 | October 1973 | Pages 227-246
Technical Paper | doi.org/10.13182/NSE73-A28192
Articles are hosted by Taylor and Francis Online.
A description is presented of an experiment which provides verification of the accuracy of the available neutron cross sections for use in transport calculations of deep penetration of neutrons through up to 3 ft of iron and 18 in. of stainless steel. Calculations of the experiment were performed with a special version of the MORSE multigroup Monte Carlo code which uses point total cross sections. Comparison of the calculations using the new MAT 4180-Mod 1 iron cross-section set with experiment indicates that the absolute neutron leakage spectra above thermal energies arising from scattering that penetrate up to 1 ft of iron or 18 in. of stainless steel can be calculated to within ∼20%, and that the total neutron leakage above thermal energies penetrating up to 3 ft of iron can also be calculated to about the same accuracy.