ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. E. Maerker, F. J. Muckenthaler
Nuclear Science and Engineering | Volume 52 | Number 2 | October 1973 | Pages 227-246
Technical Paper | doi.org/10.13182/NSE73-A28192
Articles are hosted by Taylor and Francis Online.
A description is presented of an experiment which provides verification of the accuracy of the available neutron cross sections for use in transport calculations of deep penetration of neutrons through up to 3 ft of iron and 18 in. of stainless steel. Calculations of the experiment were performed with a special version of the MORSE multigroup Monte Carlo code which uses point total cross sections. Comparison of the calculations using the new MAT 4180-Mod 1 iron cross-section set with experiment indicates that the absolute neutron leakage spectra above thermal energies arising from scattering that penetrate up to 1 ft of iron or 18 in. of stainless steel can be calculated to within ∼20%, and that the total neutron leakage above thermal energies penetrating up to 3 ft of iron can also be calculated to about the same accuracy.