ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Bryan F. Gore
Nuclear Science and Engineering | Volume 52 | Number 2 | October 1973 | Pages 209-214
Technical Paper | doi.org/10.13182/NSE73-A28190
Articles are hosted by Taylor and Francis Online.
In a class of experiments using extended planar sources, the age of fission neutrons is calculated by “correcting” the measured second moment of the flux through the use of a series in the higher flux moments. In this paper, the “correction” is generalized to include terms in addition to the leading term of an eigenfunction expansion of the neutron source distribution. In the generalized correction series, expansion coefficients are shown to be series themselves, which cannot be shown to converge in general. Examination of physically reasonable examples, one of which included only the effect of the energy-dependent extrapolation length of a published experiment, reveals divergences in the series for all expansion coefficients but that of the leading term in the correction series. Since the assumption of an energy-independent extrapolation length was central to the derivation of the correction series in question, this indictment is quite general.