ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Charles E. Cohn, Robert J. Johnson and Robert N. Macdonald
Nuclear Science and Engineering | Volume 26 | Number 2 | October 1966 | Pages 198-206
Technical Paper | doi.org/10.13182/NSE66-A28162
Articles are hosted by Taylor and Francis Online.
A method has been developed by which statics techniques can be used to calculate source transfer functions in the multigroup, multidimensional approximation. With the flux resolved into steady and fluctuating components, the time-dependent neutron balance equations are satisfied by the fluctuating part alone. Assuming that the external source and the flux response are sinusoidal, the original time-dependent equations transform into a set of complex equations dependent on space and frequency but independent of time. Separating the equations into real and imaginary parts yields coupled, inhomogeneous differential equations (two for each group). These can be solved by well-known statics techniques for the real and imaginary components φR and φI of the complex amplitudes of the fluxes, in turn yielding the gain and phase shift for each frequency of interest. This method was applied to the NORA reactor for which the space-dependent transfer function had been determined experimentally. The two-group telegrapher's equations were programmed for one-dimensional cylindrical geometry and the difference equations solved by direct matrix inversion and also by interative techniques. Results of the calculations closely reproduce the reported experimental results for gain and phase shift.