ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
C. K. Sanathanan, J. C. Carter, F. Miraldi
Nuclear Science and Engineering | Volume 23 | Number 2 | October 1965 | Pages 119-129
Technical Paper | doi.org/10.13182/NSE65-A28136
Articles are hosted by Taylor and Francis Online.
The dynamics of two-phase flow through the coolant channels of a natural-circulation boiling-water nuclear reactor is studied analytically. One-dimensional conservation equations describing the flow through each channel are written in the linearized perturbed form, and Laplace transformation in time is performed. A systematic procedure is developed to approximate the solution. The solution may, in general, be oscillatory both in time and in space. Since the space dependence of the transient steam void fraction is available, it may be multiplied by its reactivity worth to obtain the space-time-dependent void reactivity. The transfer function expressing the relation between the void fraction or velocity of water and the heat flux may be conveniently used to understand the hydrodynamic stability. The analytical techniques developed are applicable to both natural- and forced-circulation systems.