ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
C. K. Sanathanan, J. C. Carter, F. Miraldi
Nuclear Science and Engineering | Volume 23 | Number 2 | October 1965 | Pages 119-129
Technical Paper | doi.org/10.13182/NSE65-A28136
Articles are hosted by Taylor and Francis Online.
The dynamics of two-phase flow through the coolant channels of a natural-circulation boiling-water nuclear reactor is studied analytically. One-dimensional conservation equations describing the flow through each channel are written in the linearized perturbed form, and Laplace transformation in time is performed. A systematic procedure is developed to approximate the solution. The solution may, in general, be oscillatory both in time and in space. Since the space dependence of the transient steam void fraction is available, it may be multiplied by its reactivity worth to obtain the space-time-dependent void reactivity. The transfer function expressing the relation between the void fraction or velocity of water and the heat flux may be conveniently used to understand the hydrodynamic stability. The analytical techniques developed are applicable to both natural- and forced-circulation systems.