ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
G. S. Hanks, R. S. Kirby, J. M. Taub
Nuclear Science and Engineering | Volume 14 | Number 2 | October 1962 | Pages 135-143
Technical Paper | doi.org/10.13182/NSE62-A28112
Articles are hosted by Taylor and Francis Online.
An impact extrusion procedure was developed to fabricate a tantalum container approximately 9 in. long, 0.375 in. i.d., 20 to 30 mils in wall thickness, and closed at one end. A solid slug was given five impact steps to form a thick-walled cup. The cup was ironed through six stages to the final shape. The material used initially was powder metallurgy tantalum; high purity, electron-beam melted tantalum and tantalum containing 0.1 wt. % tungsten was used in later work. Aluminum bronze dies and a cold beeswax lubricant were used to prevent galling between the tools and the tantalum. Thirty to forty tons were required to form the metal in the impact extrusion steps. Draw force needed in the ironing operation ranged from 600 lb to 3600 lb. The Ta + 0.1 wt. % tungsten alloy consistently required greater impact extrusion and draw pressures than were required by the high purity metal. The investigation showed that heat treating procedures had a considerable effect on the surface finish by controlling the grain size in the metal. In general, tantalum was found to form satisfactorily in both the impact extrusion and ironing procedures.