ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Abul Kalam Md. Lutfor Rahman, Shigeyuki Kuwabara, Kunio Kato, Hidehiko Arima, Nobuhiro Shigyo, Kenji Ishibashi, Jun-ichi Hori, Ken Nakajima, Tetsuo Goto, Mikio Uematsu
Nuclear Science and Engineering | Volume 160 | Number 3 | November 2008 | Pages 363-369
Technical Paper | dx.doi.org/10.13182/NSE160-363
Articles are hosted by Taylor and Francis Online.
Nuclear waste contains a significant amount of long-lived non-gamma-emitting nuclei such as 129I and 14C. A method of nondestructive detection for monitoring long-lived waste products is proposed as an application of the (,n) reaction. This method is useful for surveying long-lived "difficult-to-measure" nuclides, e.g., 129I. Iodine-128 produced from the reaction of 129I(,n)128I emits gamma rays that can easily be measured by a gamma-ray counter. We measured the inclusive photonuclear 129I(,n)128I reaction cross section induced by bremsstrahlung photons. The photons were produced at a Ta target bombarded by 30-MeV electrons from a linear accelerator. The intensity of the slow neutrons was considered in the reactions of 127I(n, )128I and 129I(n, )130I. The activity of 128I was measured by a high-purity germanium spectrometer. The gamma-ray flux and the neutron flux were calculated using the EGS and MCNP codes, respectively. The average activation cross section of the 129I(,n)128I reaction had a 12% deviation from the evaluated International Atomic Energy Agency photonuclear data.