ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
S. Sanatani, L. S. Kothari
Nuclear Science and Engineering | Volume 11 | Number 2 | October 1961 | Pages 211-217
Technical Paper | doi.org/10.13182/NSE61-A28066
Articles are hosted by Taylor and Francis Online.
To study the diffusion of thermal neutrons in a solid medium, we divide the neutron energy range into two groups, one above and another below the Bragg cutoff energy for the medium. We then apply the method of groups to study the problem. As examples we have considered infinite slabs of beryllium at temperatures of 100°K and 300°K, with an infinite plane source of neutrons at one end of the slab. The flux distributions and the mean neutron energy are calculated for the different cases. It is found that, while for beryllium at 300°K the mean energy is not very much different from the Maxwellian value, for beryllium at T = 100°K results are markedly different from those for a Maxwellian distribution at that temperature. In order to emphasize the effect of the interaction between the two groups in determining the equilibrium flux distributions, we have also made calculation neglecting the interaction and compared these with the earlier results which take account of the interaction.