ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Alfonso Prieto-Guerrero, Gilberto Espinosa-Paredes
Nuclear Science and Engineering | Volume 160 | Number 3 | November 2008 | Pages 302-317
Technical Paper | doi.org/10.13182/NSE160-302
Articles are hosted by Taylor and Francis Online.
A wavelet ridge application is proposed as a simple method to determine the evolution of the linear stability parameters of a boiling water reactor nuclear power plant (NPP) using neutronic noise signals. The wavelet ridges are used to track the instantaneous frequencies contained in a signal and to estimate the decay ratio (DR). The first step of the method consists of denoising the analyzed signals by a discrete wavelet transform to reduce the interference of high-frequency noise and concentrate the analysis in the band where crucial frequencies are presented. Next is computation of the wavelet ridges by a continuous wavelet transform to obtain the modulus maxima from the normalized scalogram of the signal. In general, associations with these wavelet ridges can be used to compute the instantaneous frequency contained in the signal and the DR evolution with the measurement. To study the performance of the wavelet ridge method, by computing the evolution of the linear stability parameters, both simulated and real neutronic signals were considered. The simulated signal is used to validate methodically and to study some features of the wavelet ridge method. To demonstrate the method applicability, three real neutronic signals related to instability events in the Laguna Verde NPP and Ringhals and Forsmark stability benchmarks were analyzed. The investigations show that most of the local energies of the signal are concentrated and that DR variations of the signals were observed along the measurements.