ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Michael E. Rising, Todd S. Palmer
Nuclear Science and Engineering | Volume 160 | Number 3 | November 2008 | Pages 284-301
Technical Paper | doi.org/10.13182/NSE160-284
Articles are hosted by Taylor and Francis Online.
Characteristic methods are widely known to be very accurate approaches to the solution of numerical transport problems. These methods are most often used for neutron transport applications (i.e., lattice physics calculations) where spatial cells are of intermediate optical thickness [O(1) to O(100) mean free paths, depending on the energy group] and materials are not exceptionally highly scattering (scattering ratios < 0.999). There has been interest in using characteristic methods for radiative transfer applications, which often involve very optically thick and diffusive regions. Previous work has involved analyses of families of Cartesian geometry characteristic methods in optically thick and diffusive regions. There is a significant body of work in the Russian literature on curvilinear geometry characteristic methods, but very few analyses of their behavior in thick diffusive regions have been published. In this paper we develop two new members of a family of one-dimensional spherical geometry characteristic methods - the method of tubes. These new methods are similar to traditional slab geometry characteristics methods in that they utilize spatial moments of the transport equation in each cell to generate the data used in the representation of the total source (scattering source plus external source). We present the results of an asymptotic analysis of these methods to predict their behavior in the thick diffusion limit, and we compare these predictions with numerical results from several test problems. This analysis shows that the constant source (step) method behaves very poorly in the diffusion limit, but that the linear source method is accurate in this physical regime.