ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Edward W. Larsen, Allan B. Wollaber
Nuclear Science and Engineering | Volume 160 | Number 3 | November 2008 | Pages 267-283
Technical Paper | doi.org/10.13182/NSE160-267
Articles are hosted by Taylor and Francis Online.
A quantitative theory of angular truncation errors is developed for three-dimensional discrete-ordinates (SN) particle transport calculations. The theory is based on an analysis of a special problem: a localized radially symmetric source in an infinite homogeneous scattering medium, with an arbitrary scattering ratio c satisfying 0 < c < 1. For both the linear Boltzmann equation and the SN equations, we construct and compare analytic solutions of this problem that are asymptotically valid far from the source region. Comparing these analytic solutions, we find that the relative error in the SN solution increases without bound for large distances from the source region but decreases at each fixed spatial point as the scattering ratio or N (the order of the quadrature set) increases. Also, the SN error patterns conform to classic ray effects for small c but not for larger c. We present numerical results that test and validate the theoretical predictions.