ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Edward W. Larsen, Allan B. Wollaber
Nuclear Science and Engineering | Volume 160 | Number 3 | November 2008 | Pages 267-283
Technical Paper | doi.org/10.13182/NSE160-267
Articles are hosted by Taylor and Francis Online.
A quantitative theory of angular truncation errors is developed for three-dimensional discrete-ordinates (SN) particle transport calculations. The theory is based on an analysis of a special problem: a localized radially symmetric source in an infinite homogeneous scattering medium, with an arbitrary scattering ratio c satisfying 0 < c < 1. For both the linear Boltzmann equation and the SN equations, we construct and compare analytic solutions of this problem that are asymptotically valid far from the source region. Comparing these analytic solutions, we find that the relative error in the SN solution increases without bound for large distances from the source region but decreases at each fixed spatial point as the scattering ratio or N (the order of the quadrature set) increases. Also, the SN error patterns conform to classic ray effects for small c but not for larger c. We present numerical results that test and validate the theoretical predictions.