ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Otasowie Osifo, Staffan Jacobsson Svärd, Ane Håkansson, Christofer Willman, Anders Bäcklin, Tobias Lundqvist
Nuclear Science and Engineering | Volume 160 | Number 1 | September 2008 | Pages 129-143
Technical Note | dx.doi.org/10.13182/NSE160-129TN
Articles are hosted by Taylor and Francis Online.
Decay heat is an important design parameter at the future Swedish spent nuclear fuel repository. It will be calculated for each fuel assembly using dedicated depletion codes, based on the operator-declared irradiation history. However, experimental verification of the calculated decay heat is also anticipated. Such verification may be obtained by gamma scanning using the established correlation between the decay heat and the emitted gamma-ray intensity from 137Cs. In this procedure, the correctness of the operator-declared fuel parameters can be verified.Recent achievements of the gamma-scanning technique include the development of a dedicated spectroscopic data-acquisition system and the use of an advanced calorimeter for calibration. Using this system, the operator-declared burnup and cooling time of 31 pressurized water reactor fuel assemblies was verified experimentally to within 2.2% (1) and 1.9% (1), respectively. The measured decay heat agreed with calorimetric data within 2.3% (1), whereby the calculated decay heat was verified within 2.3% (1). The measuring time per fuel assembly was ~15 min.In case reliable operator-declared data are not available, the gamma-scanning technique also provides a means to independently measure the decay heat. The results obtained in this procedure agreed with calorimetric data within 2.7% (1).