ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC’s David Wright visits the Hill and more NRC news
Wright
The Nuclear Regulatory Commission is in the spotlight today for three very different reasons. First, NRC Chair David Wright was on Capitol Hill yesterday for his renomination hearing in front of the Senate’s Environment and Public Works Committee. Second, the NRC released its updated milestone schedules according to the Nuclear Energy Innovation and Modernization Act (NEIMA) and the executive orders signed by President Trump last month; and third, as reported by Reuters on Tuesday, 28 former NRC officials have condemned the dismissal of Commissioner Hanson earlier this month.
Renomination: EPW Committee chair Sen. Shelley Moore Capito (R., W.Va.) opened the hearing with a statement praising Wright’s experience and emphasized the urgency of stable leadership at the NRC.
“China is executing a rapid build-out of its nuclear industry,” Capito said. “The demand for clean, baseload power is skyrocketing as we position America to win the AI race.”
Yonghee Kim, Francesco Venneri
Nuclear Science and Engineering | Volume 160 | Number 1 | September 2008 | Pages 59-74
Technical Paper | doi.org/10.13182/NSE160-59
Articles are hosted by Taylor and Francis Online.
An optimization study of a single-pass transuranic (TRU) deep burn (DB) has been performed for a block-type modular helium reactor (MHR) proposed by General Atomics. A high-burnup TRU feed vector from light water reactors is considered: 50 GWd/tU burnup with 5-yr cooling. For three-dimensional equilibrium cores, the performance analysis is done by using McCARD, a continuous-energy Monte Carlo depletion code. The core optimization is performed from the viewpoints of the core configuration, fuel management, tristructural-isotropic (TRISO) fuel specification, and neutron spectrum. With regard to core configuration, two annular cores are investigated in terms of the neutron economy. A conventional radial shuffling scheme of fuel blocks is compared with an axial-only block-shuffling strategy in terms of the fuel burnup and core power distributions. The impact of the kernel size of the TRISO fuel is evaluated, and a diluted kernel, instead of a conventional concentrated kernel, is introduced to maximize the TRU burnup by reducing the self-shielding effects of the TRISO particles. A higher graphite density is also evaluated in terms of the fuel burnup. In addition, it is shown that the core power distribution can be effectively controlled by a zoning of the packing fraction of the TRISO fuels. We also have shown that a long-cycle DB-MHR core can be designed by using a two- or three-batch fuel-reloading scheme, at the expense of only a marginal decrease of the TRU discharge burnup. Finally, preliminary safety characteristics of a DB-MHR core have been investigated in terms of the temperature coefficients and effective delayed neutron fraction. It has been found that, depending on the fuel management scheme and fuel specifications, the TRU burnup in an optimized DB-MHR core can be well over 60% in a single-pass irradiation campaign.