ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
A. R. Di Lullo, T. N. Massey, S. M. Grimes, D. E. Carter, J. E. O'Donnell, D. Jacobs
Nuclear Science and Engineering | Volume 159 | Number 3 | July 2008 | Pages 346-350
Technical Note | doi.org/10.13182/NSE159-346TN
Articles are hosted by Taylor and Francis Online.
The use of an easily reproducible neutron source reaction that produces a well-known continuous spectrum of neutrons over a range of energies is an ideal solution for some neutron detector efficiency calibrations. Fission chamber measurements of the 27Al(d,n) reaction have proven valuable for detector calibration for energies between 0.2 and 14 MeV. To complement the aluminum data, measurements were made with a fission chamber at 60 deg of the neutron spectrum produced from the 7.5-MeV deuteron bombardment of a thick natural boron target. This should enable accurate and efficient calibration of neutron detectors for the energy range between 0.09 and 19.6 MeV. Tenth-order polynomial fits to the data are provided for the region with energies between 88 keV and 2.33 MeV and the region with energies between 1.76 and 19.6 MeV.