ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
H. Omar Wooten, Donald J. Dudziak, Nolan E. Hertel, Drew E. Kornreich, Adam C. Davis
Nuclear Science and Engineering | Volume 159 | Number 3 | July 2008 | Pages 296-310
Technical Paper | doi.org/10.13182/NSE06-42
Articles are hosted by Taylor and Francis Online.
This study investigates purely angular effects on photon buildup factors for slabs with optical thickness up to 10 mean free paths. Photon buildup factors are determined for different slabs, upon which monoenergetic photons between 50 keV and 10 MeV are incident at angles between 0 and 1.48 radians. As the incident angle is increased, the physical slab thickness is reduced to maintain a constant slant-path optical thickness relative to incident photons. This method identifies previously unexplored angular relationships between slab thickness and incident angle. Coupled electron/photon cross sections are used to account for secondary photon effects of bremsstrahlung and electron binding energies. The discrete ordinates code PARTISN is used to determine angular photon buildup factors for ten incident energies and ten incident angles for lead, iron, aluminum, and water slabs. Portions of these results are applicable to other slab geometry buildup studies.