ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
A look inside NIST’s work to optimize cancer treatment and radiation dosimetry
In an article just published by the Taking Measure blog of the National Institute of Standards and Technology, Stephen Russek—who leads the Imaging Physics Project in the Magnetic Imaging Group at NIST and codirects the MRI Biomarker Measurement Service—describes his team’s work using phantom stand-ins for human tissue.
Hany S. Abdel-Khalik, Paul J. Turinsky, Matthew A. Jessee
Nuclear Science and Engineering | Volume 159 | Number 3 | July 2008 | Pages 256-272
Technical Paper | doi.org/10.13182/NSE159-256
Articles are hosted by Taylor and Francis Online.
This paper introduces the concepts and derives the mathematical theory of efficient subspace methods (ESMs) applied to the simulation of large-scale complex models, of which nuclear reactor simulation will serve as a test basis. ESMs are intended to advance the capabilities of predictive simulation to meet the functional requirements of future energy system simulation and overcome the inadequacies of current design methods. Some of the inadequacies addressed by ESM include lack of rigorous approach to perform comprehensive validation of the multitudes of models and input data used in the design calculations and lack of robust mathematical approaches to enhance fidelity of existing and advanced computational codes. To accomplish these tasks, the computational tools must be capable of performing the following three applications with both accuracy and efficiency: (a) sensitivity analysis of key system attributes with respect to various input data; (b) uncertainty quantification for key system attributes; and (c) adaptive simulation, also known as data assimilation, for adapting existing models based on the assimilated body of experimental information to achieve the best possible prediction accuracy. These three applications, involving large-scale computational models, are now considered computationally infeasible if both the input data and key system attributes or experimental information fields are large. This paper will develop the mathematical theory of ESM-based algorithms for these three applications. The treatment in this paper is based on linearized approximation of the associated computational models. Extension to higher-order approximations represents the focus of our ongoing research.