ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
B. D. Ganapol
Nuclear Science and Engineering | Volume 159 | Number 2 | June 2008 | Pages 169-181
Technical Paper | doi.org/10.13182/NSE159-169
Articles are hosted by Taylor and Francis Online.
A new benchmark for monoenergetic neutron transport in one-dimensional cylindrical geometry is presented. In the past, several accurate benchmarks (i.e., numerical solutions) in cylindrical geometry, based on the singular eigenfunction expansion of the solution to the corresponding pseudoproblem, have appeared in the literature. In the new formulation, called the direct FN method in cylindrical geometry, we base the FN solution directly on the integro-differential equation satisfied by the pseudoproblem. Through appropriate projections, a straightforward FN formulation results in singular integral equations for both the flux and current. Enhanced by convergence acceleration, the FN approximation accurately reproduces published benchmark solutions for both fixed sources and criticality. Thus, we have developed an entirely pedagogical self-contained and highly accurate benchmark based on an alternative application of FN theory.