ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. G. Buchan, C. C. Pain, M. D. Eaton, A. J. H. Goddard, R. P. Smedley-Stevenson
Nuclear Science and Engineering | Volume 159 | Number 2 | June 2008 | Pages 127-152
Technical Paper | doi.org/10.13182/NSE159-127
Articles are hosted by Taylor and Francis Online.
This paper presents two new methods for discretizing the angular dimension of the Boltzmann transport equation that describes the transport of neutral particles such as neutrons and photons. Our methods represent the direction of particle travel using linear and quadratic varying approximations over a quadrilateral partitioning of the unit sphere's surface (which is used to represent a particle's direction), which is similar to the approximations provided by a finite element expansion. However, our approximations are generated using a second generation spherical wavelet technique. This method generates hierarchical sets of compactly supported basis functions that are important properties for our future work in applying adaptive resolution in the transport equation's angular dimension. These new wavelet methods are applied to five monoenergetic transport problems to demonstrate their capabilities to efficiently represent the angular flux. Particular emphasis is placed on their ability to approximate particle transport in problems involving extreme material cross sections, namely, particle streaming through voids and their transport through highly scattering media. We are able to show that the methods work well against the common methods SN and PN when used within established radiation transport codes.