ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Edward W. Larsen, Jinan Yang
Nuclear Science and Engineering | Volume 159 | Number 2 | June 2008 | Pages 107-126
Technical Paper | doi.org/10.13182/NSE07-92
Articles are hosted by Taylor and Francis Online.
In Monte Carlo simulations of k-eigenvalue problems for optically thick fissile systems with a high dominance ratio, the eigenfunction is often poorly estimated because of the undersampling of the fission source. Although undersampling can be addressed by sufficiently increasing the number of particles per cycle, this can be impractical in difficult problems. Here, we present a new functional Monte Carlo (FMC) method that minimizes this difficulty for many problems and yields a more accurate estimate of the k-eigenvalue. In the FMC method, standard Monte Carlo techniques do not directly estimate the eigenfunction; instead, they directly estimate certain nonlinear functionals that depend only weakly on the eigenfunction. The functionals are then used to more accurately estimate the k-eigenfunction and the eigenvalue. Like standard Monte Carlo methods, the FMC method has only statistical errors that limit to zero as the number of particles per cycle and the number of cycles become large. We provide numerical results that illustrate the advantages and limitations of the new method.