ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
A look inside NIST’s work to optimize cancer treatment and radiation dosimetry
In an article just published by the Taking Measure blog of the National Institute of Standards and Technology, Stephen Russek—who leads the Imaging Physics Project in the Magnetic Imaging Group at NIST and codirects the MRI Biomarker Measurement Service—describes his team’s work using phantom stand-ins for human tissue.
G. Kessler
Nuclear Science and Engineering | Volume 159 | Number 1 | May 2008 | Pages 56-82
Technical Paper | doi.org/10.13182/NSE159-56
Articles are hosted by Taylor and Francis Online.
The three most important americium isotopes, 241Am, 242mAm, and 243Am originate in the nuclear fuel of pressurized water reactors (PWRs), fast reactors (FRs), or accelerator-driven systems (ADSs) in a ratio of 241Am/243Am between ~0.45/0.55 to ~0.85/0.15. The content of 242mAm in the spent fuel of PWRs, FRs, and ADSs is relatively small and varies between 0.08 and 4.5%. Only by dedicated breeding in 241Am fuel and blanket assemblies could this 242mAm content be increased to ~7%. Only the isotope 241Am has a relatively high alpha-particle heat production whereas the isotopes 242mAm and 243Am have a relatively small alpha-particle heat production. All three americium isotopes are spontaneous fission neutron emitters.In this paper the different isotopic compositions of the three americium isotopes, 241Am, 242mAm, and 243Am are assembled for a number of fuel cycle strategies for PWRs, FRs and ADSs. Then, the critical masses, spontaneous fission neutron sources, and alpha-particle heat power of these different americium compositions are calculated. In a preignition analysis for gun systems and implosion systems, it is shown that only the implosion system would be applicable to the considered americium isotopic compositions. A subsequent thermal analysis with assumptions for the geometry and choice of materials of so-called hypothetical nuclear explosive devices (HNEDs) shows that the high alpha-particle heat power in the fissile reactor americium part would lead to such high temperatures that the surrounding chemical high explosives would melt and self-explode, and the americium metal would melt.Such HNEDs on the basis of reactor americium as fissile material would be technically unfeasible.