ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Zhaopeng Zhong, Thomas J. Downar, Yunlin Xu, Mark D. DeHart, Kevin T. Clarno
Nuclear Science and Engineering | Volume 158 | Number 3 | March 2008 | Pages 289-298
Technical Note | doi.org/10.13182/NSE06-24TN
Articles are hosted by Taylor and Francis Online.
The coarse-mesh finite difference (CMFD) formulation is applied as an efficient means of acceleration of the heterogeneous whole-core transport calculation. The CMFD formulation enables dynamic homogenization of the cells during the iterative solution process such that the heterogeneous transport solution can be preserved. Dynamic group condensation is also possible with a two-level CMFD formulation involving alternate multigroup and two-group calculations. The two-dimensional discrete ordinates (SN) method is used as the kernel to generate the heterogeneous solution; the CMFD solution provides the SN kernel with much faster convergence of fission and scattering source distributions. In this paper, the two-level CMFD acceleration has been tested using the VENUS-2 two-dimensional whole-core model; it is shown that the number of SN transport sweeps can be reduced by a factor of about 10 while exactly reproducing the original transport solution. The second level of CMFD acceleration is also significant in reducing the computation time. The application of the CMFD formulation in arbitrary geometry demonstrates that CMFD also works well for irregular geometries.