ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Nuclear power’s new rule book: Managing uncertainty in efficiency, safety, and independence
The U.S. nuclear industry is standing at its most volatile regulatory moment yet—one that will shape the trajectory and the safety of the industry for decades to come. Recent judicial, legislative, and executive actions are rewriting the rules governing the licensing and regulation of nuclear power reactors. Although these changes are intended to promote and accelerate the deployment of new nuclear energy technologies, the collision of multiple legal shifts—occurring simultaneously and intersecting with profound technological uncertainties—is overwhelming the Nuclear Regulatory Commission and threatening to destabilize investor and industry expectations.
Hoai Nam Tran, Yasuyoshi Kato, Yasushi Muto
Nuclear Science and Engineering | Volume 158 | Number 3 | March 2008 | Pages 264-271
Technical Paper | doi.org/10.13182/NSE08-A2752
Articles are hosted by Taylor and Francis Online.
A burnable poison (BP) loading principle has been proposed for once-through-then-out refueling of a high-temperature gas-cooled reactor (HTGR) core with pebble fuel. The principle holds that an axial core power peaking factor can be minimized when k of the fuel pebbles is kept constant during their axial movement from the top to the bottom of the core by adding BP. This principle has been confirmed numerically using B4C with 10B enrichment of 90% and Gd2O3 with natural content as BP. Spherical particles of B4C and Gd2O3 are distributed uniformly in the fuel pebble. The respective optimal radius and number of BP particles are 90 m and 1650 for B4C and 950 m and 16 for Gd2O3. Through addition of B4C and Gd2O3, the power peaking factors are reduced from 4.4 to 1.61 and 1.64, respectively. Burnup reactivity swings are reduced from 38% to about 2% in both BP loadings. Because of reduction of the power peaking factors, the maximum fuel temperatures are respectively lower than the maximum permissible values of 1250 and 1600°C for normal operation and depressurization accident.