ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Congress passes new nuclear funding
On January 15, in an 82–14 vote, the U.S. Senate passed an Energy and Water Development appropriations bill to fund the U.S. Department of Energy for fiscal year 2026 as part of a broader package that also funded the U.S. Army Corps of Engineers and the U.S. Bureau of Reclamation.
Reuben T. Sorensen, John C. Lee
Nuclear Science and Engineering | Volume 158 | Number 3 | March 2008 | Pages 213-230
Technical Paper | doi.org/10.13182/NSE08-A2749
Articles are hosted by Taylor and Francis Online.
We have developed a light water reactor (LWR) equilibrium cycle search algorithm that is similar to the REBUS-3 fast reactor methodology but with depletion capabilities typically employed for LWR analysis. Our LWR methodology projects the original coupled nonlinear isotopic balance equations to a series of equations that are piecewise linear in time. Iterations are performed on microscopic reaction rates until the linearized isotopic balance equations yield an ultimate equilibrium state. We further reduce the computational burden associated with LWR analysis by approximating global depletion calculations with assembly-level, collision probability calculations performed by the CASMO-3 code. We demonstrate the benefits of our equilibrium cycle methodology by calculating the true equilibrium Pu inventory of two configurations: a heterogeneous assembly configuration that contains both low enriched UO2 and mixed oxide (MOX) fuel pins and a homogeneous configuration comprising a 2 × 2 colorset arrangement of MOX and low enriched UO2 assemblies. For each configuration our methodology yields a true equilibrium Pu inventory with only 12 CASMO-3 lattice physics calculations. As a validation, an inventory extrapolation technique is used to arrive at a quasi-equilibrium cycle for both LWR configurations. The extrapolated technique yields a similar Pu inventory and isotopic composition but requires 65 lattice physics calculations.