ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
S. Cierjacks, Y. Hino, M. Drosg
Nuclear Science and Engineering | Volume 106 | Number 2 | October 1990 | Pages 183-191
Technical Paper | doi.org/10.13182/NSE90-07
Articles are hosted by Taylor and Francis Online.
A high-intensity, high-energy neutron source for fusion materials testing is proposed. Utilizing the 1H(t,n)3He neutron source reaction and bombarding a thick (totally absorbing) hydrogen-rich target with an intense beam of 21-MeV tritons provides a powerful continuous-energy-spectrum neutron source. The global spectrum of such a source is almost flat over the energy range from ∼1 to 14 MeV and exhibits a sharp energy cutoff level at 14.6 MeV. To meet near-term needs for fusion materials testing, a source concept is considered that involves multiple linear accelerator modules providing two 250-mA triton beams to bombard two water jet targets that face each other and irradiate the same test volume. Calculations of the source properties from well-established neutron production cross-section data for the 1H(t,n)3He reaction predict a test volume of 4.2 dm3 in which an average flux of ≥1 × 1014 n·cm-2·s-1 is achieved. The relevant properties of this source and the possibility of its realization, well within the limits of present technology, are discussed.