ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
S. Cierjacks, Y. Hino, M. Drosg
Nuclear Science and Engineering | Volume 106 | Number 2 | October 1990 | Pages 183-191
Technical Paper | doi.org/10.13182/NSE90-07
Articles are hosted by Taylor and Francis Online.
A high-intensity, high-energy neutron source for fusion materials testing is proposed. Utilizing the 1H(t,n)3He neutron source reaction and bombarding a thick (totally absorbing) hydrogen-rich target with an intense beam of 21-MeV tritons provides a powerful continuous-energy-spectrum neutron source. The global spectrum of such a source is almost flat over the energy range from ∼1 to 14 MeV and exhibits a sharp energy cutoff level at 14.6 MeV. To meet near-term needs for fusion materials testing, a source concept is considered that involves multiple linear accelerator modules providing two 250-mA triton beams to bombard two water jet targets that face each other and irradiate the same test volume. Calculations of the source properties from well-established neutron production cross-section data for the 1H(t,n)3He reaction predict a test volume of 4.2 dm3 in which an average flux of ≥1 × 1014 n·cm-2·s-1 is achieved. The relevant properties of this source and the possibility of its realization, well within the limits of present technology, are discussed.