ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
C. O. Slater, F. J. Muckenthaler, D. T. Ingersoll
Nuclear Science and Engineering | Volume 97 | Number 2 | October 1987 | Pages 123-144
Technical Paper | doi.org/10.13182/NSE87-A27460
Articles are hosted by Taylor and Francis Online.
The analysis of an Oak Ridge National Laboratory Tower Shielding Facility (TSF) experiment in which measurements were made of neutrons streaming through a mockup of a section of the lower core support structure of a large-scale high-temperature gas-cooled reactor (HTGR) design concept is described. The analysis was performed with the same calculational methods used for an analysis of the HTGR design itself, the purpose of the experiment being to provide data against which the validity of the calculational methods could be tested. Also summarized are the HTGR design calculation results; how they affected the design and objectives of the TSF experiment is described. Comparisons of the neutron detector responses observed in the experiment with calculated responses showed satisfactory agreement in most cases, and the implications of these results for the HTGR shield design are highlighted. Among other conclusions, it was determined that 1. the calculational methods are adequate 2. neutron streaming through the HTGR core support structure is predicted reasonably well 3. thermal neutron fluence levels at the HTGR lower plenum side wall are probably overestimated by at most a factor of 2.3.