ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
M. R. Dorr, J. F. Painter, S. T. Perkins
Nuclear Science and Engineering | Volume 94 | Number 2 | October 1986 | Pages 157-166
Technical Paper | doi.org/10.13182/NSE86-A27450
Articles are hosted by Taylor and Francis Online.
A new algorithm for modeling charged-particle transport in a fully ionized plasma is presented. A standard multigroup discretization of the Fokker-Planck-Boltzmann equation is transport-corrected to implicitly include the anisotropic effects of both coulomb scattering and nuclear reactions. This allows the subsequent application of the Levermore flux-limited diffusion theory, which was originally developed for isotropic radiative transfer calculations. A finite differencing of the resulting spatial transport operator is constructed so as to yield centered and upwinded operators in the diffusion and free-streaming limits, respectively. The time integration is performed by the general purpose ordinary differential equation solver TORANAGA. This approach results in a highly vectorizable algorithm that has been implemented on the CRAY-1. Some numerical results are presented that compare this algorithm to the corresponding, but far more expensive, Monte Carlo calculations.