ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Eugene Goldberg, Ronald L. Barber, Norman A. Bonner, Clyde M. Griffith, David R. Nethaway, Robert C. Haight
Nuclear Science and Engineering | Volume 94 | Number 2 | October 1986 | Pages 120-135
Technical Paper | doi.org/10.13182/NSE86-A27447
Articles are hosted by Taylor and Francis Online.
A large cylindrical assembly of 6LiD was irradiated by neutrons from a high-intensity deuterium-tritium source. Small samples of 6Li, 7Li, and 6LiH, all encapsulated in lead, were positioned along the assembly axis and served as indicators for 4He and tritium production. The amount of 4He was determined by isotope dilution mass spectrometry while the tritium content of the 6LiH wafers was measured by proportional counting of gas samples. Careful comparison of the results with TART Monte Carlo calculations showed excellent agreement. For 4He generation, the experimental values were 1.01 ± 0.06 times those of the calculations, while for tritium the ratio was 1.055 ± 0.07.