ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
M. Segev
Nuclear Science and Engineering | Volume 91 | Number 2 | October 1985 | Pages 143-152
Technical Paper | doi.org/10.13182/NSE85-A27437
Articles are hosted by Taylor and Francis Online.
A deuterium-tritium neutron source is amplified when emitted into a body of material with appreciable (n,2n), (n,3n), and (n,f) cross sections. This amplification is described by a simple theory, approximating the strict integral transport description of the process. The distribution of neutrons in energy, from 14 MeV down to the (n,2n) threshold, is approximated by a generalized slowing down equation, which is similar in form to the infinite medium slowing down equation, and with average collision probabilities taking up the role of scattering fractions. Following a few collisions, the collision source spatial distribution resembles the fundamental mode flux distribution of a critical reactor. The average collision probability for such a source is, in diffusion theory, ∑tr/(∑tr + DB2), where B2 is the geometrical buckling of the system. This yields an expression of the form (αx+βx2)/(l + αx + βx2) for the average collision probability, where x is a representative optical thickness of the system. It has been shown by numerical means that this form for the average collision probability is generally true for centrally peaked sources in variously shaped bare bodies of any optical thickness.