ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Y. T. Fung
Nuclear Science and Engineering | Volume 85 | Number 2 | October 1983 | Pages 178-187
Technical Paper | doi.org/10.13182/NSE83-A27425
Articles are hosted by Taylor and Francis Online.
Vibration characteristics are investigated for a cylindrical structure subject to turbulent parallel flows. Pressure fluctuations from external flows on the surface of the cylinder provide the lateral forces for oscillation motion. The fluctuating pressure in the turbulent boundary layer of the cylinder is assumed to be homogeneous. We propose a vibration mechanism involving a time scale, namely the azimuthal time delay resulting from the small-scale nonaxisymmetric perturbations to the pressure field. This mechanism is based on the propagation of pressure signals with the characteristic azimuthal time delay playing an important role in the degree of lateral force concentration, and therefore, in the flow-induced oscillation of the cylinder. In view of the proposed mechanism, the axisymmetric pressure perturbation results in a case of lateral force concentration in which the magnitudes of the resulting forcing function and of the vibration response are the maxima. These characteristics may serve as criteria to predict the upper bound on the vibration response of structures when asymmetric perturbations are present in turbulent parallel flows.