ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Y. T. Fung
Nuclear Science and Engineering | Volume 85 | Number 2 | October 1983 | Pages 178-187
Technical Paper | doi.org/10.13182/NSE83-A27425
Articles are hosted by Taylor and Francis Online.
Vibration characteristics are investigated for a cylindrical structure subject to turbulent parallel flows. Pressure fluctuations from external flows on the surface of the cylinder provide the lateral forces for oscillation motion. The fluctuating pressure in the turbulent boundary layer of the cylinder is assumed to be homogeneous. We propose a vibration mechanism involving a time scale, namely the azimuthal time delay resulting from the small-scale nonaxisymmetric perturbations to the pressure field. This mechanism is based on the propagation of pressure signals with the characteristic azimuthal time delay playing an important role in the degree of lateral force concentration, and therefore, in the flow-induced oscillation of the cylinder. In view of the proposed mechanism, the axisymmetric pressure perturbation results in a case of lateral force concentration in which the magnitudes of the resulting forcing function and of the vibration response are the maxima. These characteristics may serve as criteria to predict the upper bound on the vibration response of structures when asymmetric perturbations are present in turbulent parallel flows.