ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Y. T. Fung
Nuclear Science and Engineering | Volume 85 | Number 2 | October 1983 | Pages 178-187
Technical Paper | doi.org/10.13182/NSE83-A27425
Articles are hosted by Taylor and Francis Online.
Vibration characteristics are investigated for a cylindrical structure subject to turbulent parallel flows. Pressure fluctuations from external flows on the surface of the cylinder provide the lateral forces for oscillation motion. The fluctuating pressure in the turbulent boundary layer of the cylinder is assumed to be homogeneous. We propose a vibration mechanism involving a time scale, namely the azimuthal time delay resulting from the small-scale nonaxisymmetric perturbations to the pressure field. This mechanism is based on the propagation of pressure signals with the characteristic azimuthal time delay playing an important role in the degree of lateral force concentration, and therefore, in the flow-induced oscillation of the cylinder. In view of the proposed mechanism, the axisymmetric pressure perturbation results in a case of lateral force concentration in which the magnitudes of the resulting forcing function and of the vibration response are the maxima. These characteristics may serve as criteria to predict the upper bound on the vibration response of structures when asymmetric perturbations are present in turbulent parallel flows.