ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
Yakov Ben-Haim
Nuclear Science and Engineering | Volume 85 | Number 2 | October 1983 | Pages 156-166
Technical Paper | doi.org/10.13182/NSE83-A27423
Articles are hosted by Taylor and Francis Online.
Automatic control of routine plant operation is receiving increasing attention as a valuable tool for improving plant performance. A crucial aspect of automatic control is the capability to manage malfunctions. Among the tasks involved is the isolation (identification) of the malfunctioning apparatus. An algorithm for malfunction isolation in linear stochastic systems is developed. It is shown that a single linear filter is adequate for isolating a wide range of malfunctions. Most importantly, no knowledge about the nature of the malfunction is required to construct the filter, other than that the linearity of the dynamics and the measurements be preserved (complete or “hard” sensor failures are included). It is shown that the performance of the algorithm improves with the number of state variables that are directly measured. Numerical application to a simple nuclear plant model is presented.