ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Robert E. Miles
Nuclear Science and Engineering | Volume 79 | Number 2 | October 1981 | Pages 239-245
Technical Note | doi.org/10.13182/NSE81-A27414
Articles are hosted by Taylor and Francis Online.
A new approach is presented for handling problems involving radioactive decay, buildup, and mass transfer. This method uses recursion relations for computing the exponential terms that makes the computation fast and efficient. The concepts of a path specific probability function and a cumulative transfer probability function are introduced and used in developing a general equation. This general equation permits branching from a parent to any daughter nuclide further down the decay chain and also mass transfer to other compartments linked by first-order transfer rate constants. Backward branching or feedback mechanisms, however, are not permitted. Treatment for problems involving singularities is also presented. The method has been found to be useful for many practical applications such as fission product buildup in nuclear reactor cores and releases from reactor plants.