ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
D. J. Sherwood, C. L. Crawford, T. L. White, C. E. Duffey, T. B. Calloway
Nuclear Science and Engineering | Volume 158 | Number 1 | January 2008 | Pages 88-96
Technical Note | doi.org/10.13182/NSE08-A2741
Articles are hosted by Taylor and Francis Online.
Ventilation and mixing systems in the Hanford Waste Treatment and Immobilization Plant (WTP) are being designed to account for the flammable gas hydrogen that will form in process streams, just as it also does in the radioactive liquid wastes awaiting immobilization at the Hanford Tank Farms. Tank wastes forming hydrogen at the highest rates do so by reactions involving dissolved organic complexant compounds, even though hydrogen is also formed by the better known radiolysis pathway. Hydrogen generation rates (HGRs) are predicted with a correlation relating waste properties to reaction pathways involving radiolysis of water and the degradation of organic compounds. This correlation accounts only for aqueous phase reactions. An antifoam agent (AFA) will be added to waste processed in the WTP. This organic liquid mixture is immiscible in aqueous systems and will therefore form a nonaqueous phase liquid layer on the processed waste, unless some of its compounds are unstable in the hostile physical/chemical environment and break down into soluble degradation products. Dissolved organic species increase the organic source term in the WTP HGR correlation, but the correlation requires adaptation to address hydrogen formed from immiscible organic liquids. Here, we report our initial evaluation of the hydrogen formed by 60Co gamma irradiation of a waste simulant containing Dow Corning Q2-3183A AFA with an adapted WTP HGR correlation.