ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
L. W. Weston, J. H. Todd
Nuclear Science and Engineering | Volume 79 | Number 2 | October 1981 | Pages 184-196
Technical Paper | doi.org/10.13182/NSE81-A27407
Articles are hosted by Taylor and Francis Online.
The neutron capture cross section of 237Np was measured from 0.01 eV to 200 keV. The capture cross section was normalized at 0.0253 eV to a value of 180 ± 6 b derived from previous total cross-section measurements in the resonance region of neutron energies and the shape of the present data from 0.0253 eV to the resonance region. Resonance parameters were derived for the neutron energy region from 0.01 to 100 eV. Agreement with ENDF/B-V is poor in the thermal region (6.4%), excellent in the resonance region (∼2%) except for the 0.491-eV resonance, and good (∼5%) in the keV neutron energy region. An uncertainty analysis including a correlation matrix for group-averaged cross sections is presented. These results are important both for thermal and fast reactor applications and the calculation of 238Pu production, an intense alpha emitter.