ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. F. Lebrat, G. Aliberti, A. D'Angelo, A. Billebaud, R. Brissot, H. Brockmann, M. Carta, C. Destouches, F. Gabrielli, E. Gonzalez, A. Hogenbirk, R. Klein-Meulenkamp, C. Le Brun, E. Liatard, F. Mellier, N. Messaoudi, V. Peluso, M. Plaschy, M. Thomas, D. Villamarín, J. Vollaire
Nuclear Science and Engineering | Volume 158 | Number 1 | January 2008 | Pages 49-67
Technical Paper | doi.org/10.13182/NSE05-100
Articles are hosted by Taylor and Francis Online.
The MUSE-4 program is a series of zero-power experiments carried out at the Commissariat à l'Energie Atomique Cadarache MASURCA nuclear facility from 2001 to 2004 to study the neutronics of accelerator-driven systems (ADSs). The program has investigated the coupling of a multiplying medium to neutron sources of 2.6 or 14 MeV provided by an accelerator (GENEPI) via D(d,n)3He or T(d,n)4He nuclear fusion reactions, respectively. The fuel was UO2-PuO2, the simulated coolant was sodium or lead, and the multiplication factor keff ranged from 1 to 0.95. The aim of the experiment was to develop new measurement techniques specific to ADSs and to test the performances of neutronic calculations codes for such systems.The interpretation of the MUSE-4 experiment has shown that the physical parameters of the system are globally well reproduced by calculations performed with the ERANOS code system, which proves good agreement with both the measurements and the reference Monte Carlo calculations; this concerns the critical mass, the delayed neutron fraction, the fission rate shapes, and the spectral indices. This is a particularly remarkable issue for ERANOS and its associated libraries, which had never been tested for such situations.Concerning the nuclear data, JEF-based cross sections provide a better agreement on critical mass than other libraries. A sensitivity of several measured parameters to the elastic and inelastic cross section of lead have been demonstrated, and possible biases on these cross sections have been indicated.We have shown that several methods based on deterministic or stochastic calculations allow us to relate the experimental neutron population decay after a source pulse with the reactivity of the system; these reactivity determination techniques are in good agreement with standard reactivity measurement techniques.