ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
R. E. Alcouffe
Nuclear Science and Engineering | Volume 64 | Number 2 | October 1977 | Pages 344-355
Technical Paper | doi.org/10.13182/NSE77-1
Articles are hosted by Taylor and Francis Online.
We investigate a class of acceleration schemes that resemble the conventional synthetic method in that they utilize the diffusion operator in the transport iteration schemes. These schemes are not dependent on diffusion theory as being a good approximation to transport theory; they only make use of the diffusion equation form. The accelerated iteration involves alternate diffusion and transport solutions where coupling between the equations is achieved using a correction term applied to either (a) the diffusion coefficient, (b) the removal cross section, or (c) the source of the diffusion equation. The methods involving the modification of the diffusion coefficient and of the removal term yield nonlinear acceleration schemes and are used in keff calculations, while the source term modification approach is linear at least before discretization and is used for inhomogeneous source problems. A careful analysis shows that there is a preferred differencing method that eliminates the previously observed instability of the conventional synthetic method. Using this preferred difference scheme results in an acceleration method that is at the same time stable and efficient. This preferred difference approach renders the source correction scheme, which is linear in its continuous form and nonlinear in its differenced form. An additional feature of these approaches is that they can be used as schemes for obtaining improved diffusion solutions for approximately twice the cost of a diffusion calculation. Numerical experimentation on a wide range of problems in one and two dimensions indicates that improvement from a factor of from 2 to 10 over rebalance or Chebyshev acceleration is obtained. The improvement is most pronounced in problems with large regions of scattering material where the unaccelerated transport solutions converge very slowly.