ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
B. D. Ganapol, P. W. McKenty, K. L. Peddicord
Nuclear Science and Engineering | Volume 64 | Number 2 | October 1977 | Pages 317-331
Technical Paper | doi.org/10.13182/NSE77-A27373
Articles are hosted by Taylor and Francis Online.
The multiple collision technique as applied to the monoenergetic time-dependent neutron transport equation for pulsed plane source emission in an infinite medium is used to obtain the flux due to a pulsed point source in the same medium. This result is then integrated to determine the flux due to the corresponding pulsed line source problem. The semi-infinite albedo problem is also shown to be solvable using the multiple collision approach. A generalization to include delayed neutrons follows directly from the multiple collision treatment, as does an equivalence between a monoenergetic time-dependent problem and a particular stationary slowing down problem in infinite geometry. Results are tabulated and comparisons are made to provide benchmark solutions to the fundamental time-dependent transport problems considered and thus bridge the gap between theory and practice.