ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
B. D. Ganapol, P. W. McKenty, K. L. Peddicord
Nuclear Science and Engineering | Volume 64 | Number 2 | October 1977 | Pages 317-331
Technical Paper | doi.org/10.13182/NSE77-A27373
Articles are hosted by Taylor and Francis Online.
The multiple collision technique as applied to the monoenergetic time-dependent neutron transport equation for pulsed plane source emission in an infinite medium is used to obtain the flux due to a pulsed point source in the same medium. This result is then integrated to determine the flux due to the corresponding pulsed line source problem. The semi-infinite albedo problem is also shown to be solvable using the multiple collision approach. A generalization to include delayed neutrons follows directly from the multiple collision treatment, as does an equivalence between a monoenergetic time-dependent problem and a particular stationary slowing down problem in infinite geometry. Results are tabulated and comparisons are made to provide benchmark solutions to the fundamental time-dependent transport problems considered and thus bridge the gap between theory and practice.