ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TVA nominees promise to support advanced reactor development
Four nominees to serve on the Tennessee Valley Authority Board of Directors told the Senate Environment and Public Works Committee that they support the build-out of new advanced nuclear reactors to meet the increased energy demand being shouldered by the country’s largest public utility.
Todd S. Palmer
Nuclear Science and Engineering | Volume 158 | Number 1 | January 2008 | Pages 40-48
Technical Paper | doi.org/10.13182/NSE08-A2737
Articles are hosted by Taylor and Francis Online.
The standard model for transport through binary stochastic media involves two coupled transport equations. Previous research has shown that several types of source iterations applied to the solution of these equations can converge arbitrarily slowly when one or both of the materials is optically thick and diffusive. In this work, we derive, analyze, and implement an acceleration scheme for binary stochastic mixture transport iterations. The equations are derived using the modified four-step method and take the form of discretized coupled diffusion equations. A Fourier analysis indicates that for a wide variety of physical problems and spatial mesh sizes, the scheme is rapidly convergent. Spectral radii measured during these accelerated iterations compare very well with Fourier analysis predictions.