ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
M. Taube
Nuclear Science and Engineering | Volume 61 | Number 2 | October 1976 | Pages 212-221
Technical Paper | doi.org/10.13182/NSE76-A27354
Articles are hosted by Taylor and Francis Online.
The fission products 90Sr and 137Cs produced by fission reactors of 30 GW(th) can be transmutated into stable nuclides by neutron irradiation with a thermal flux of 2 × 1016 n cm−2 s−1. The rates of transmutation are 15 and 3.3 times greater, respectively, than that of spontaneous beta decay. The transmutation would take place in a central thermalized region of a high-flux fast burner reactor of 7 GW(th). In the case where the power reactors of 23 GW(th) are breeders with a high breeding gain of G = 0.38, the total system, inclusive of the high-flux burner, remains a breeding system, with Gtotal = 0.09. Details of the neutronics calculations and simplified thermohydraulics are given. The high-flux burner is fueled with a molten salt of chlorides of plutonium and sodium with a power density of 10 kW cm−3. The “self-liquidation” of such a system is discussed.