ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
D. E. Wood
Nuclear Science and Engineering | Volume 5 | Number 1 | January 1959 | Pages 45-48
Technical Paper | doi.org/10.13182/NSE59-A27328
Articles are hosted by Taylor and Francis Online.
Neutron leakage through a reactor shield composed primarily of iron is discussed. This is of interest whenever the hydrogen content of a shield is reduced either by design requirements or thermal deterioration. Work done at several sites on individual aspects of the problem is combined to present an over-all description of the neutron streaming. In general there are two different phenomena involved, each determined by the geometry. In the case of a long thin streaming path, such as a structural member penetrating the shield, the leakage consists of neutrons which have suffered no collisions. These neutrons will have energies corresponding to energies at which the iron total cross section is small. Iron has several antiresonances in the interval 25 to 100 kev, with the largest dip apparently at 25 kev, so most of the neutron leakage will be at these energies. The other case involves the attenuation of neutrons by large slabs of iron with little or no hydrogen (or other good moderator) present. The 25 kev neutrons are still present, but they are augmented by a large number of neutrons of energy between thermal and 1 Mev. These neutrons may have collided elastically many times but with only a small energy loss each time. Above 1 Mev, inelastic scattering suppresses the leakage, and below a few volts, absorption removes the neutrons.