ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
UM conducts molten salt experiment
For 2,300 hours, the molten salt pump Shaft Seal Test Facility (SSTF) operated at the University of Michigan’s Thermal Hydraulics Laboratory, according to an article from UM. The large-scale experiment was designed to evaluate shaft seal performance in high-temperature pump systems. Fewer than 10 facilities worldwide have successfully operated fluoride or chloride salts for more than 100 hours using over 10 kilograms of material.
George C. Wu, Lawrence Ruby
Nuclear Science and Engineering | Volume 68 | Number 3 | December 1978 | Pages 349-351
Technical Note | doi.org/10.13182/NSE78-A27311
Articles are hosted by Taylor and Francis Online.
Three-group diffusion theory has been applied to a computation of the 231Pa mass required to sustain a fast-neutron chain reaction. The method was tested by preliminary calculation of several 235U-238U systems and of a single 239Pu-240Pu system. The best agreement between predictions and measurements was found for high-enrichment 235U-238U systems. In the case of 231Pa, where many of the necessary data do not exist, use was made of the characteristics of 237Np as a substitute. The predicted critical radius for 231Pa is 22.67 ± 1.81 cm, and the corresponding critical mass is 750 ± 180 kg.