ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
E. M. Oblow
Nuclear Science and Engineering | Volume 68 | Number 3 | December 1978 | Pages 322-337
Technical Paper | doi.org/10.13182/NSE78-A27309
Articles are hosted by Taylor and Francis Online.
A sensitivity theory based on reactor physics experience was successfully developed for a reactor thermal-hydraulics problem. The new theory is derived for the case of nonlinear transient heat and mass transfer in a typical reactor subassembly. Suitable adjoint equations for heat and fluid flow are presented along with methods for deriving the sources and boundary and final conditions for these equations. Expressions for the sensitivity of any integral temperature response to problem input data are also presented. The theory is applied to a sample problem describing the steady-state thermal-hydraulic conditions in a Clinch River Breeder Reactor fuel channel. For this case, sensitivity coefficients are derived for several thermal response functions (i.e., peak clad and peak fuel temperature) for all physical input data (i.e., the heat transfer coefficient, thermal conductivities, etc.). A typical uncertainty analysis for peak clad and peak fuel temperature was also performed using uncertainty information about the physical data. Conclusions are drawn about the applicability of this approach to more general problems, and the procedures for its implementation in conjunction with large safety or thermal-hydraulics codes are outlined. The method is also compared with currently used response surface techniques.