ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Fred Cooper, John Dienes
Nuclear Science and Engineering | Volume 68 | Number 3 | December 1978 | Pages 308-321
Technical Paper | doi.org/10.13182/NSE78-A27308
Articles are hosted by Taylor and Francis Online.
We investigate the growth of Rayleigh-Taylor instabilities following the deceleration of fuel by a less dense coolant using the method of generalized coordinates, which allows us to study the nonlinear, late-time aspects of the problem as well as the possibility of fuel freezing at the interface. We consider liquid coolant in contact with three possible states of fuel—pure liquid, pure solid, and liquid fuel freezing at the interface—and treat several acceleration mechanisms. Assuming the instability starts at a planar interface as a velocity perturbation proportional to the interfacial velocity, we find that when the fuel is completely frozen or freezing at the interface, instabilities will not grow unless the initial interfacial relative velocity satisfies a relationship of the form where υ0 is the initial relative velocity, ρf the density of the fuel, Y0 the yield strength of the frozen fuel, λ the wavelength of the instability, and L a characteristic length. The specific form of C depends on the acceleration mechanism and when freezing begins. For the case of UO2 and sodium, we follow the growth of the fastest growing wavelength instability for different acceleration mechanisms and determine the impulse needed for instabilities to grow when freezing is occurring at the interface.