ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
O. A. Wasson, R. A. Schrack, G. P. Lamaze
Nuclear Science and Engineering | Volume 68 | Number 2 | November 1978 | Pages 170-182
Technical Paper | doi.org/10.13182/NSE78-A27287
Articles are hosted by Taylor and Francis Online.
The common features used in the measurement 6Li(n,α), 10B(n,αγ), and 235U(n,f) cross sections presented in three subsequent papers are described. The experiments were performed on the 200-m flight path of the National Bureau of Standards Linac and cover the neutron energy region from 5 to 800 keV. The neutron flux monitor was a hydrogen-filled gas proportional counter located at the end of the flight path, while the primary detectors specific to each of the three cross-section measurements were placed 70 m along the flight path. The properties of the neutron source, the detailed operation of the flux monitor, the data acquisition system, and the data analysis procedure are described. The systematic errors in the neutron flux measurement are given.