ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
A. Dubi, S. A. W. Gerstl, Donald J. Dudziak
Nuclear Science and Engineering | Volume 68 | Number 1 | October 1978 | Pages 19-30
Technical Paper | doi.org/10.13182/NSE78-A27266
Articles are hosted by Taylor and Francis Online.
A method to calculate volumetric distributions of contributon flux and contributon current is developed utilizing only the forward Monte Carlo approach. Various aspects of tracking contributons are discussed. Basically, the new method consists of sampling secondary particles at collision points occurring within a prespecified volume. A simple connection between integrals over that volume and surface integrals of contributon current is derived, thus providing a means of calculating integral detector responses via a volume integration of the contributon current. This leads to a considerable improvement of the effectiveness with which deep penetration radiation transport problems can be solved relative to analog Monte Carlo. A theoretical and numerical comparison of the performance of this new method with the performance of analog Monte Carlo techniques is carried out. Numerical results are discussed, and a theoretical model to predict the relative advantage of the new method was found to give satisfactory answers. If no biasing techniques are employed in either method, our sample problems show that the contributon method can save up to 90% of computing time over the conventional Monte Carlo method in deep penetration problems when computing an integral response with the same target accuracy.