ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
S. Pearlstein
Nuclear Science and Engineering | Volume 68 | Number 1 | October 1978 | Pages 10-18
Technical Paper | doi.org/10.13182/NSE78-A27265
Articles are hosted by Taylor and Francis Online.
The probability table method (PTM), used in unresolved resonance region calculations, assumes that cross sections are not energy correlated. Strong cross-section energy auto-correlations are noted for some heavy nuclides that could affect the use of the PTM in the unresolved resonance region or its extension to the resolved resonance region. Uranium-238 has strong cross-section auto-correlations and is considered a severe test material for the PTM. Monte Carlo calculations of capture rates in 238U at 500, 1000, and 2000 eV do not show differences between the PTM and exact methods within an ∼1% calculational uncertainty. These results show that strong auto-correlations do not interfere with the use of the PTM in the resolved and unresolved resonance regions.