ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Kohyu Fukunishi
Nuclear Science and Engineering | Volume 67 | Number 3 | September 1978 | Pages 296-308
Technical Paper | doi.org/10.13182/NSE78-A27250
Articles are hosted by Taylor and Francis Online.
Some attempts have been made to investigate noise sources in a boiling water reactor (BWR) by multivariate random data analyses. Autoregression and multivariate coherency such as partial and/or multiple coherency have been introduced to the analysis of time series data gathered from a medium-sized BWR plant (BWR-3) of 460-MW electric power to evaluate linear relations among multiple inputs and outputs that are coupled with each other by sophisticated feedbacks. Through these attempts, the main local disturbance that leads to the peak in the spectrum of reactor power noise and is classified as global noise has been concluded to be caused by noise sources originated, not outside the reactor core, but inside the reactor core itself Furthermore, the noise sources in the core have been found to be the turbulence of bubble generation and extinction in the lower region of coolant flow channel. It is found that the noise sources have different resonant frequencies that depend on the running speeds of coolant flows in fuel assemblies near the bottom local detector. It can also be shown that pressure waves induced by the local disturbances propagate into the coolant water in the lower core plenum, where they are mixed together into a single-pressure wave whose resonant frequency corresponds to the peak frequency in the spectrum of reactor power noise.