ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Sheng-Chi Lin, J. C. Robinson, D. L. Selby
Nuclear Science and Engineering | Volume 67 | Number 1 | July 1978 | Pages 61-73
Technical Paper | doi.org/10.13182/NSE78-A27237
Articles are hosted by Taylor and Francis Online.
The Lewins variational functional was employed to formulate approximations to the neutron detection efficiency, which is a parameter required in the measurement of reactivity by the modified source multiplication technique. In particular, a conventional variational method, a variational extrapolation method, a variational interpolation method, and a multi-reference-state variational method were developed for estimating neutron detection efficiency. Results obtained using the various approximate techniques in one and two dimensions were compared with results from exact formulations. The results obtained using the multi-reference-state variational method in all cases and the variational interpolation method in most cases compared very favorably (discrepancies <5%) with results from the exact calculations. The approximate techniques can be cast in a form where very simple calculational capabilities are all that are required to obtain detection efficiency for any given (but arbitrary) subcritical state. Therefore, we conclude that the methodology developed herein would be applicable to on-line applications using minimal computer capabilities.