ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Sheng-Chi Lin, J. C. Robinson, D. L. Selby
Nuclear Science and Engineering | Volume 67 | Number 1 | July 1978 | Pages 61-73
Technical Paper | doi.org/10.13182/NSE78-A27237
Articles are hosted by Taylor and Francis Online.
The Lewins variational functional was employed to formulate approximations to the neutron detection efficiency, which is a parameter required in the measurement of reactivity by the modified source multiplication technique. In particular, a conventional variational method, a variational extrapolation method, a variational interpolation method, and a multi-reference-state variational method were developed for estimating neutron detection efficiency. Results obtained using the various approximate techniques in one and two dimensions were compared with results from exact formulations. The results obtained using the multi-reference-state variational method in all cases and the variational interpolation method in most cases compared very favorably (discrepancies <5%) with results from the exact calculations. The approximate techniques can be cast in a form where very simple calculational capabilities are all that are required to obtain detection efficiency for any given (but arbitrary) subcritical state. Therefore, we conclude that the methodology developed herein would be applicable to on-line applications using minimal computer capabilities.