ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Minoru Shinkawa, Yoshihiro Yamane, Kojiro Nishina, Hajime Tamagawa
Nuclear Science and Engineering | Volume 67 | Number 1 | July 1978 | Pages 19-33
Technical Paper | doi.org/10.13182/NSE78-A27234
Articles are hosted by Taylor and Francis Online.
One-dimensional, one-energy-group diffusion theory is applied to a coupled-core slab reactor to derive kinetic equations for the system, with different modes of formulation taken for moderator regions and for core regions. For the former, the diffusion equation is exactly solved to obtain the time-dependent neutron currents from moderator to core (the moderator response function) in response to the neutron incident current in the form of a unit impulse on the boundary. For the core regions, the neutron flux ψ(x,t) is written as a product of a shape function, (x,t), and a time function, P(t), as suggested by Henry, with P(t) chosen to represent the time variation of total importance over the respective core. The boundary terms that arise in the equations for P(t) are combined with incoming neutron currents at the boundaries, which in turn are expressed in terms of the moderator region response functions above. The equations for P(t) derived by such procedures include the coupling effect between the two cores, without a need for the conventional, a priori assumption of coupling coefficient. For the Argonaut two-slab core, the transfer functions are obtained and compared with existing values. The value of the conventional coupling coefficient is also inferred by reducing the present form of coupling terms by approximation. From the approximation needed in the procedure, the limitation of the coupling coefficient approach is discussed.